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ABSTRACT

The solar wind is a highly turbulent plasma for which the mean rate of energy transfer ε has been

measured for a long time using the Politano-Pouquet (PP98) exact law. However, this law assumes

statistical homogeneity that can be violated by the presence of discontinuities. Here, we introduce a

new method based on the inertial dissipation DσI whose analytical form is derived from incompressible

magnetohydrodynamics (MHD); it can be considered as a weak and local (in space) formulation of the

PP98 law whose expression is recovered after integration is space. We used DσI to estimate the local

energy transfer rate from the THEMIS-B and Parker Solar Probe (PSP) data taken in the solar wind

at different heliospheric distances. Our study reveals that discontinuities near the Sun lead to a strong

energy transfer that affects a wide range of scales σ. We also observe that switchbacks seem to be

characterized by a singular behavior with an energy transfer varying as σ−3/4, which slightly differs

from classical discontinuities characterized by a σ−1 scaling. A comparison between the measurements

of ε and DσI shows that in general the latter is significantly larger than the former.

1. INTRODUCTION

For several decades, the solar wind – a collisionless

plasma – has been the subject of an apparent para-

dox. The measurements made by Voyager 1 & 2 re-

vealed that the average (proton) temperature of the so-

lar wind decreases as ∼ r−0.5 over 1–20 Astronomical

Units (AU), with r the radial distance from the Sun

(Gazis & Lazarus 1982; Marsch et al. 1982; Richard-

son et al. 1995; Matthaeus et al. 1999). However, for

a radially-expanding, adiabatically cooling plasma, one

would expect a temperature variation as r−4/3, which is

significantly steeper than the observed law. This para-

dox can be solved if an efficient local heating source

exists, which must be collisionless in nature (note, how-

ever, that the adiabatic model can be questioned since

it derives from a fluid approximation, which implicitly

assumes the existence of collisions).

In the near outer heliosphere (r > 2 AU), large-scale

shocks (or stream shear as a source of turbulence) at

the interface between high and low speed streams were

quickly suspected as a major source of heating (Gazis

& Lazarus 1982; Burlaga & Mish 1987; David & Galtier

2021). In the far outer solar wind (r > 20 AU) where the

temperature increases slightly (Matthaeus et al. 1999;

Elliott et al. 2019), pick up ions are considered as a

main source of heating (Gazis et al. 1994; Pine et al.

2020a). These are originally neutrals from the interstel-

lar medium that are transformed into ions by charge

exchange with solar wind protons, and are eventually

picked up by the interplanetary magnetic field. In this

context, several (phenomenological) turbulence trans-

port model equations have been successfully used to

study the solar wind heating (Zank et al. 1996, 2018).

In the inner heliosphere (r ≤ 1 AU), the situation is

different because turbulent fluctuations are dominant.

(By turbulent fluctuations, we mean a medium not dom-

inated by large scale structures like the interplanetary

shocks observed at 5 AU: in this case, fluctuations are

also detected but only as a small-scale modification of

the shocks.) Therefore, studies focus on the turbu-

lent cascade which is seen as an efficient mechanism to

bring energy from large magnetohydrodynamic (MHD)

scales to small kinetic (sub-MHD) ones (Sahraoui et al.

2020). In-situ measurements of ε, the mean rate of en-

ergy transfer at MHD scales, provides an estimate of

the heating rate by assuming complete conversion from

the former to the latter. While those estimates can-

not inform us about the precise kinetic mechanism re-

sponsible for energy dissipation, recent progress using

Landau-fluid simulations showed the ability of the ex-

act laws to estimate the amount of dissipation due to

Landau damping (Ferrand et al. 2021).

In practice, ε can be estimated from exact laws.

First developed in incompressible hydrodynamics (Kol-
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mogorov 1941; Batchelor 1953; Antonia et al. 1997), the

exact laws have been derived for many physical systems

where turbulence is encountered. This includes isother-

mal compressible hydrodynamics (Galtier & Banerjee

2011), a model often used to simulate supersonic inter-

stellar turbulence (Kritsuk et al. 2007; Federrath et al.

2010; Ferrand et al. 2020). For the solar wind, the sim-

plest exact law is that derived from incompressible MHD

(Politano & Pouquet 1998). Its use led to the first es-

timate of turbulent heating in the solar wind (Sorriso-

Valvo et al. 2007; MacBride et al. 2008; Marino et al.

2008; Stawarz et al. 2009, 2010; Osman et al. 2011).

Later, several generalized exact laws were derived to ac-

count for compressible MHD (Banerjee & Galtier 2013;

Andrés & Sahraoui 2017; Simon & Sahraoui 2021), Hall-

MHD (Galtier 2008; Banerjee & Galtier 2016; Andrés

et al. 2018; Hellinger et al. 2018; Ferrand et al. 2021)

and even gravito-turbulence (Banerjee & Kritsuk 2017,

2018). With these new laws, it was possible to obtain

better estimates of ε in the solar wind and planetary

plasma environments that incorporate density fluctua-

tions and sub-ion scale effects (Banerjee et al. 2016; Ha-

did et al. 2017; Andrés et al. 2019; Bandyopadhyay et al.

2020; Andrés et al. 2021).

Exact laws are based on the zeroth law of turbulence

(unproved in general) which says that in a turbulence

experiment, everything else being fixed, if the energy

dissipation ends to zero, the mean rate of energy dissi-

pation tends to a non-zero limit, which is ε (Frisch 1995).

This law has led to an interesting mathematical devel-

opment around the concept of weak solutions in Euler’s

equation, useful when the velocity becomes non-regular

(Leray 1934). In particular, the non-regularity of the

field can lead in principle to energy dissipation with-

out the assistance of viscosity (Onsager 1949). This

new form of dissipation has been called inertial dissi-

pation (noted hereafter DI) as opposed to viscous dis-

sipation. The mathematical expression of DI for the

Euler equation (Duchon & Robert 2000) has a striking

similarity with Kolmogorov’s law (Antonia et al. 1997).

Unlike the exact law, the expression of DI does not in-

volve an ensemble average and, therefore, can be used

at any point in a turbulent fluid to evaluate the local

(in space) dissipation (Saw et al. 2016). This work on

incompressible hydrodynamics has recently been gener-

alized to 3D incompressible (Hall) MHD (Galtier 2018)

and to a low dimensional MHD system (Yanase 1997)

that has been used to estimate the inertial dissipation

produced by collisionles shocks in the outer heliosphere

(David & Galtier 2021). Like with Burgers’ equation

(Eyink 2019; Dubrulle 2019), with the low dimensional

MHD model the zeroth law of turbulence can be proved

with, on average, 〈DI〉 = ε.

The structure of the paper is as follows. Section 2 is

devoted to theoretical framework (incompressible MHD,

exact law, inertial dissipation). Section 3 presents the

selection of data (THEMIS-B, PSP) and their process-

ing; various situations are considered (slow and fast

winds, discontinuities). The results of our analysis are

presented in Section 4 with in particular the measure-

ments of ε and DI. A conclusion is finally given in Sec-

tion 5.

2. MHD THEORY

2.1. Four-thirds exact law

We briefly recall the four-thirds exact law for incom-

pressible MHD derived by Politano & Pouquet (1998),

which we will hereafter call the PP98 law. Let u be the

fluid velocity, b ≡ B/√µ0ρ0 the magnetic field normal-

ized to a velocity with ρ0 the mean plasma density and

µ0 the vacuum permeability, P∗ = P + b2/2 the sum

of the thermal and magnetic pressures, ν the kinematic

viscosity and η the magnetic diffusivity. Then, the in-

compressible MHD equations read (Galtier 2016)

∂tu+ u · ∇u=−∇P∗ + b · ∇b+ ν∇2u, (1)

∂tb+ u · ∇b=b · ∇u+ η∇2b, (2)

where u and b are zero-divergence fields. To derive these

equations, the following Ohm’s law is used

e = ηj − u× b, (3)

where e is the normalized electric field and j = ∇×b the

normalized electric current density. To obtain the PP98

law, we assume a large-scale stationary forcing and an

asymptotically large (magnetic and kinetic) Reynolds

numbers. After a standard calculation, one obtains a

primitive form of the PP98 exact law

−4ε = ∇` ·
〈(
|δu|2 + |δb|2

)
δu− 2 (δu · δb) δb

〉
, (4)

where 〈·〉 is the ensemble average. For any variable

g, δg ≡ g (x+ `) − g (x), with ` the vector incre-

ment. In this expression, ε is the mean rate of en-

ergy transfer/dissipation/forcing, the equivalence be-

tween the three definitions being due to the stationarity

assumption.

The previous expression can be reduced to the PP98

law when the statistical isotropy is further assumed

−4

3
ε` =

〈(
|δu|2 + |δb|2

)
δu` − 2 (δu · δb) δb`

〉
. (5)

Here, the index ` refers to a projection along the longi-

tudinal direction given by the vector `, with ` its norm.



3

Figure 1. Scheme of the filtering process. The color re-
flects the intensity of the smoothing. See equation (6) for
the definitions of σ and ξ.

The PP98 exact law is valid in the inertial range of

incompressible MHD turbulence. A basic assumption

made to use the law (5) is that the fields are regular. In

simple terms, a field is said to be regular if all the clas-

sical tools of analysis (such as derivative calculations)

can be applied. In case of non-regular fields (e.g. a

discontinuity), a weak formulation must be introduced.

2.2. Weak formulation

The weak formalism is based on smoothing of a field

with some kernel ϕ ∈ C∞ with compact support on R3,

even, non-negative and with integral 1. To formalize

the notion of scale, we define a test function ϕσ such

that ϕσ(ξ) ≡ σ−3ϕ(ξ/σ). The regularized fields at scale

σ are defined by taking the convolution product of the

fields with ϕσ (for simplicity, the time dependence is

omitted)

uσ(x) ≡ ϕσ ∗ u =

∫
R3

ϕσ(ξ)u(x+ ξ)dξ, (6)

which tends to u(x) when σ → 0. The other regular-

ized quantities are defined in the same way. Note that

this filtering process consists in smoothing the fields in

a space defined by a sphere of radius σ centered at the

point ξ (see Figure 1). Under these considerations, the

kinetic energy reads

Eσu (x)≡ 1

2
uiu

σ
i =

1

2

∫
R3

ϕσ(ξ)ui(x)ui(x+ ξ)dξ, (7)

where the Einstein summation convention is used (the

generalization to the magnetic energy is straightfor-

ward). The previous expression can also be interpreted

as the local equivalent of a correlation function where

the ensemble average is replaced by a local average over

scale.

With the above definitions and using a point-splitting

regularization, one can derive the following weak for-

mulation (valid for individual realizations) of the local

energy conservation at position x (Galtier 2018)

∂tE
σ(x) +∇ ·Πσ(x) = −Dσν,η(x)−DσI (x), (8)

with Eσ = Eσu + Eσb the total energy. Πσ is the spatial

flux whose heavy form is not given explicitly here; this

is a purely local term that describes how energy is trans-

ported across the flow, and it vanishes after integration

over space with the appropriate boundary conditions.

We also have the energy dissipation by viscous and re-

sistive effects (that includes the vorticity ω = ∇ × u)

Dσν,η(x) = νω · ωσ + ηj · jσ, (9)

and the inertial (also called anomalous or defect (Eyink

2003)) dissipation

DσI (x) =
1

4

∫
R3

∇ϕσ (ξ) · Y (x, ξ)dξ, (10)

where the third-order mixed structure function reads

Y (x, ξ) =
(
|δu|2 + |δb|2

)
δu− 2 (δu · δb) δb, (11)

with δg ≡ g (x+ ξ) − g (x). Expression (8) must be

seen as a generalization of the PP98 law (or more pre-

cisely of the Kármán-Howarth MHD equation (Politano

& Pouquet 1998)) that we can recover for regular fields

and homogeneous turbulence (see below). Note that in

the limit σ → 0, the two dissipative terms are mutu-

ally exclusive: the presence of any viscosity/resistivity

should prevent the formation of singularities. Thus, in

this limit, only one of them can appear in the equa-

tion. Another physical relevance of the weak formu-

lation is revealed when performing an integration over

space. The absence of an energy source at the bound-

ary is formally equivalent to assuming periodicity (or

homogeneity); therefore, the notation 〈·〉 will be used

for integration in space. We find

∂t〈Eσ〉 = −〈Dσν,η〉 − 〈DσI 〉, (12)

with

〈DσI 〉 =
1

4

∫
R3

∇ϕσ (ξ) · 〈Y (x, ξ)〉dξ. (13)

In the small scale limit, we find for a viscous/resistive

flow

lim
σ→0
〈Dσν,η〉 ≡ 〈Dν,η〉 = ε. (14)

Therefore, Dσν,η can be used to trace, locally and across

scales, the rate of viscous/resistive energy dissipation
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(Kuzzay et al. 2019). On the other hand, expression

(13) has a strong similarity with the RHS term of the

exact law (4), especially if one performs an integration

by part, assuming the fields to be regular, and takes the

small scale limit

DI(x)≡ lim
σ→0
DσI (x)

=− lim
σ→0

1

4

∫
R3

ϕσ (ξ)∇ · Y (x, ξ)dξ. (15)

This relation connects directly DI to the PP98 law,

which leads to the remarkable equality 〈DI〉 = ε (see

Appendix A). Therefore, DσI can be used to trace, lo-

cally and across scales, the rate of energy transfer.

Other interpretations can be made based on rela-

tion (15). In presence of finite viscosity and resistiv-

ity, the fields are regular and thus satisfy limξ→0+ δu =

limξ→0+ δb = 0, which leads to DI = 0; this is the clas-

sical situation. On the contrary, if ν = η = 0, the fields

are non-regular and DI can have a contribution. This

contribution is however not systematic because the fields

must satisfy the Hölder condition (Onsager 1949). Using

a scaling analysis (at a fixed position x), we can make

three theoretical predictions of practical importance:

1. In the inertial range where the fields correspond

to turbulent fluctuations that obey the PP98 law

in the inertial range, we have δu3 ∼ δb3 ∼ σ and

thus DσI (x) ∼ σ0.

2. At small scales where viscous/resistive effects

dominate, a Taylor expansion gives δu ∼ δb ∼ σ

and thus DσI (x) ∼ σ2.

3. However, when the fields are non-regular and act
like discontinuities, the increments correspond to

jumps δu ∼ ∆u, δb ∼ ∆b, and thus DσI (x) ∼ σ−1.

Therefore, depending on the scaling that would be

measured in the solar wind (see below) it will be pos-

sible to make a distinction between turbulence, vis-

cous/resistive damping and discontinuities (see Fig-

ure 2). Note, however, that other σ-dependence are

possible for non-regular fields (Jaffard 2006; Lashermes

et al. 2008; Jaffard et al. 2009).

To conclude, we point out that DI is a generalized

function (i.e., a distribution) and its analytic form (if it

can be found) can lead to the appearance of a δ-function

(see e.g. David & Galtier (2021)). This means that when

the limit σ → 0 is taken, one expects to see the value of

|DσI | increases without limit, however, in practice, the

value σ = 0 will never be reached (see below).

log σlog σK

logDσ
I

∝ σ−1

∝ σ2

∝ σ0

Figure 2. Variation (schematic) of the inertial dissipa-
tion Dσ

I (x) as a function of the scale σ for a discontinu-
ity (red line), turbulent fluctuations (green line), and vis-
cous/resistive damping (blue line). The intersection between
the green and the blue lines defines the dissipative (i.e., Kol-
mogorov) scale and is noted σK . Similarly, the intersection
between the green and the red line can define the discontinu-
ity scale below which discontinuities become dominant (see
Figure 4).

3. METHODS

3.1. Data selection

In a first step, we used the THEMIS-B/ARTEMIS

P1 spacecraft data during time intervals when it was

traveling in the free streaming solar wind. The mag-

netic field data and plasma moments (protons density

and velocity) were measured respectively by the Flux

Gate Magnetometer (FGM) and the Electrostatic An-

alyzer (ESA). All data are expressed in the Geocentric

Solar Ecliptic (GSE) coordinate system, have a time res-

olution dt = 3s, which corresponds to the spacecraft

spin period. We analyzed more than 180 hours of data

between 2008 and 2011 that cover both fast and slow

solar winds. Fast winds are defined as having an aver-

age speed USW > 450 km s−1. The others are the slow

winds.

In a second step, we analyze PSP’s data measured be-

tween 2018–2020 during the first and fifth approaches of

the spacecraft to the Sun. We selected two subsets of a

total duration of about 115 hours corresponding roughly

to radial distances of 36 and 30 solar radii (at perihe-

lion) to which we refer respectively by subsets PSP1 and

PSP5. The magnetic field and plasma moments (protons

density and velocity) were measured respectively by the

fluxgate magnetometer (MAG) and the Solar Probe An-

alyzer (SPAN). All data are expressed in the Radial Tan-

gential Normal (RTN) coordinate system, have a time

resolution dt = 1s

3.2. Data processing

For both spacecraft, the selected intervals are divided

into samples of two hours, which correspond to a number
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of data points N = 2400 for THEMIS-B and N = 7200

for PSP. The data selection yielded :

– 51 samples (122,400 data points) in the slow solar

wind.

– 46 samples (110,400 data points) in the fast solar

wind.

– 61 samples (439,200 data points) for PSP1.

– 55 samples (396,000 data points) for PSP5.

Data gaps (rarely present) were interpolated linearly.

For the selected time intervals, we compute the energy

cascade rates ε estimated by PP98 and the inertial dis-

sipation DσI using respectively equations (5) and (10).

The structure functions of u and b are calculated for

different time lags τ ∈ [1, 100] dt to probe the scales

of the inertial range. We use the Taylor hypothesis

τ = −ξ/USW with USW the mean solar wind speed on

the interval, assuming that DI = Dσmin

I , with σmin the

minimum accessible value. We note 〈DσI 〉 the time aver-

age of the inertial dissipation over the two hours sample.

Mathematically, the inertial dissipation DσI can be in-

terpreted as a continuous wavelet transform of the third-

order structure function Y with respect to the wavelet ϕ.

The link between the weak formulation and the wavelet

transform reveals several advantages of its application to

rough turbulent fields. Indeed, a wavelet transform can

be considered as a “local Fourier transform” and it is

suitable for application to inhomogeneous fields. Thus,

it will genuinely deal with the observed breaking of the

spatial translation symmetry (Dubrulle 2019). There-

fore, we computed DσI on the entire time interval for 100

values of σ as a continuous 1D wavelet transform based

on fast Fourier transform – a Matlab package provided

by the toolbox YAWTB (Jacques et al. 2010). The test

function ϕσ is a normalized Gaussian of width σ, which

is convenient because its derivative is exact (more infor-

mation on the different ways to implement DI is given

in Appendix A). Note that in the implementation of the

inertial dissipation, only the terms depending on ξ are

computed because the convolution product is performed

on this variable and, given the properties of ϕσ, it is

obvious that the smoothing of a field independent of ξ

leaves the result unchanged. To minimize the finite win-

dow size effects due to the non-periodicity of the data,

we artificially extend each time series to twice it size

to apply a Gaussian windowing prior to computing its

Fourier transform. The final result is obtained in the

time domain after an inverse Fourier transform where

only the information from the central part of the time

series (i.e. the original one of interest) is considered.

4. OBSERVATIONAL RESULTS

4.1. Inhomogeneous structures

We begin our data analysis with four examples where

discontinuities are clearly present. In Figure 3 we show

(top left) a THEMIS-B slow wind interval on August 08,

2008 from 02:54:36 to 04:54:36, (top right) a THEMIS-

B fast wind interval on April 04, 2011 from 21:15:23 to

23:15:23, (bottom left) a PSP1 interval on November

06, 2018 from 09:00:00 to 11:00:00, and (bottom right)

a PSP5 interval on June 03, 2020 from 22:00:00 to June

04, 00:00:00. For each case study, the first two panels

(top to bottom) show the three components of the pro-

tons velocity and the magnetic field, respectively. They

highlight the presence of discontinuities, and thus the

breaking of statistical homogeneity, which may jeopar-

dize the use of exact laws. We find that for the PSP

intervals that are closer to the Sun, the velocity and

magnetic field components are strongly correlated (re-

spectively 91%, 90% and 91% for the radial, tangential

and normal components for the PSP1 interval, and 96%,

86% and 80% for the PSP5 one), which can be inter-

preted as the signature of outward propagating Alfvén

waves (Belcher & Davis 1971). The third panel shows

the proton density, which is relatively constant, and the

last panel shows a space-scale diagram of the inertial dis-

sipation (in modulus): time is on the x-axis, the width

σ of the test function on the y-axis and the intensity

of |DσI | is in color. These maps illustrate the local en-

ergy transfer between different scales σ (at a given time

t, or using the Taylor hypothesis, at a given position

x = −USW t with USW the solar wind speed). If we

follow the evolution of the plasma from small to large

scales, the dark areas delimit the impact of an event on

the energy transfer: the larger is the bright area in scale,

the greater is the impact of the event in scale and the

smaller would be the local energy transfer. Conversely,

when a region is mainly dark this means that the energy

transfer is local and the dynamics is driven by turbulent

fluctuations.

A more precise analysis can be made by observing

how |DσI | evolves according to the scale σ at given times

t? and tf . We respectively chose t? and tf such that

|DI(t?)| = max (|DI|) and |DσI (tf )| = min (|DI|) over the

2h interval (see Figure 3). The first and second panels

of Figure 4 reveals that, when placed respectively on a

discontinuity (at time t?) and on a turbulent fluctua-

tion (at time tf ), the inertial dissipation does follow the

σ−1 and σ0 power-laws, as theoretically expected. The

third panel shows the evolution of the inertial dissipa-

tion | 〈DσI 〉 |, averaged over the entire intervals of 2h, as a

function of σ. The power-laws found indicate the dom-
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Figure 3. Top panels display the slow (left) and fast (right) winds measured with THEMIS-B. Bottom panels display PSP1
(left) and PSP5 (right). In each panel, from top to bottom, we find the fluctuations of the velocity components, fluctuations
of the magnetic field components, proton density and space-scale diagram (in modulus) of the inertial dissipation. The red,
blue, and green curves correspond respectively to the x, y, z components (GSE coordinates) for THEMIS-B and to the R, T,N
components (RTN coordinates) for PSP. The vertical gray lines locate the instant for which |DI| is extremal on the sample.

inant type of energy transfer. For those coming from

THEMIS-B (in blue), we observe mainly a flat profile

which means that the dominant mechanism is a turbu-

lent cascade due to fluctuations. For PSP1 (light red),

a power law in σ−1 appears at small σ, showing the

prevalence of discontinuities at small scales for this in-

terval. For PSP5 (dark red), an intermediate power law

is observed suggesting that the effect of discontinuities

is weaker. The bottom panel displays the value of |ε| as

a function of τ for the four intervals. We can see that

the curves do not exhibit a clear plateau as theoreti-

cally expected; this might be due to the violation of one

(or more) of the assumptions on which the exact law for-

malism is grounded. This is particularly the case for the

statistical homogeneity which is unlikely to be valid here

because of the presence of discontinuities that distort the

estimate of the mean rate of energy cascade (Hadid et al.

2017). Note that for the PSP intervals close to the Sun,
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Figure 4. From top to bottom: modulus of the inertial
dissipation at time t? as a function of scale σ, modulus of
the inertial dissipation at time tf as a function of scale σ,
estimates of the mean inertial dissipation as a function of σ,
and modulus of the mean rate of energy cascade as a function
of τ . Here, σ and τ vary approximately on the same interval.

both intervals give the same order of magnitude of the

inertial dissipation, but is larger than that from Themis

data at 1 AU, which overall remain true for the other in-

tervals. This is consistent with the the radial increase of

the turbulent cascade rate ε as one approaches the Sun

(Andrés et al. 2021; Bandyopadhyay et al. 2020). Also

the inertial dissipation is larger for fast than for slow so-

lar winds in agreement with previous results regarding

the cascade rate ε (Hadid et al. 2017).

4.2. Switchbacks

Figure 5. 1h interval of PSP1 with switchbacks. From top
to bottom: velocity components, magnetic field components,
proton density, modulus of inertial dissipation (at different
times (see also the vertical grey lines in the first three pan-
els and dotted white lines in the last one) t? = {01:41:13,
02:11:47, 02:19:53} in grey, black and light grey, respectively)
as a function of σ, modulus of 1h-averaged inertial dissipa-
tion as a function of σ (red) and modulus of mean rate of
energy cascade as a function of τ (blue), and finally the 3D
map of the modulus of inertial dissipation where the color is
related to the intensity and thus to the height of |Dσ

I |. Ve-
locity and magnetic fields are expressed in RTN coordinates.

Switchbacks are defined as sudden reversals of the

radial magnetic field component associated with sharp

variations in the radial plasma flow (Neugebauer &

Goldstein 2013; Horbury et al. 2018, 2020). Although

they are actively studied, their origin remains an open
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question (Bale et al. 2019; Squire et al. 2020). We pro-

pose here to estimate the inertial dissipation produced

by these peculiar structures in order to quantify their

relative importance in the energy cascade.

We focus on a PSP1 interval on November 06, 2018

from 01:30 to 02:30 where switchbacks are numerous.

The first two panels of Figure 5 again highlight a clear

correlation between the velocity and the magnetic field

(respectively 97%, 86% and 90% for the radial, tangen-

tial and normal components), which testifies to the pres-

ence of outward Alfvén waves. By following the evolu-

tion of |DσI | as a function of σ on switchbacks located at

times t?, a power-law close to σ−3/4 seems to emerge.

This does not correspond to any scaling laws presented

in Section 2 and is therefore not described theoretically

by the third-order structure function. The fifth panel

shows mainly a flat curve for both the mean rate of en-

ergy cascade and the inertial dissipation. We also see

that the values coincide relatively well in the limit of

small scale σ. The fact that ε is relatively smooth and

constant may come from the fact that the discontinuities

are so large that they impose at all scales their jump (or

amplitude) on the increments δu and δb, which then

would lead to a higher value of ε (compared to Fig-

ure 4). Although both estimates (| 〈DσI 〉 | and |ε|) give a

similar result, rigorously speaking, the exact law should

not be applicable in this type of data. The last panel

is a 3D space-scale diagram of inertial dissipation which

highlights that switchbacks make the main contribution

to the energy cascade. Indeed, one can observe that the

large-scale contribution of the inertial dissipation comes

from the locations where switchbacks occur and, we ob-

serve the same behavior as in subsection 4.1: the dark

areas mark the limit of the impact of a discontinuity on

its vicinity. Overall, we observe that the values of |DσI |
for switchbacks – in particular in the limit of small σ

– are significantly higher than the values found for the

other types of singularities (caracterized by other power-

laws – see also the end of Section 2.2), which suggests

that switchbacks can contribute to a stronger heating.

4.3. Statistical results

We conclude our data analysis with a statistical com-

parison between the mean inertial dissipation and the

mean rate of energy transfer as a function of the solar

wind speed and the level of the magnetic field fluctua-

tions. Note that the latter is estimated by the ratio be-

tween the root mean square BRMS and the mean value

B0 of the magnetic field.

In Figure 6, we show | 〈DI〉 | as a function of |ε| for

each processed interval. The upper panels correspond

to THEMIS-B intervals (triangles for slow wind and

squares for fast wind) and the lower panels to PSP in-

tervals (triangles for PSP1 and squares for PSP5). The

dashed (diagonal) line obeys the equation |〈DI〉| = |ε|.
The colors in the left column reflect the mean solar wind

velocity while those in the right column correspond to

the amplitude of the magnetic field fluctuations of each

of the intervals. First, we notice that near the Sun (bot-

tom panels), the values of |〈DI〉| and of |ε| are higher

than near the Earth (top panels). This property can

be attributed primarily to the strength of magnetic field

which intensifies as one approaches the Sun, but also to

the omnipresence of discontinuities near the Sun. Note

that the decrease of the cascade rate with the helio-

centric radial distance has already been measured from

exact laws or turbulence transport models, but it is be-

lieved that we can only reach a qualitative answer with

these models in the presence of discontinuities. Second,

a clear correlation with the wind speed is found at 1 AU

with the two methods: the faster the wind, the higher

the mean rate of energy transfer. This property was also

shown by Hadid et al. (2017) using exact (compressible

and incompressible) laws. Note that only THEMIS-B

data include fast winds (PSP orbits near the Sun re-

main mainly in the equatorial plane where the wind is

generally slow). Third, in the right column, no clear

behavior emerges in the magnetic field fluctuations at

1 AU while for the PSP intervals, even if these events

are a few and thus statistically meaningless, large val-

ues of BRMS/B0 tend to reduce the mean rate of energy

transfer (see also Figure 9 in Appendix B). Last, the

majority of the values lies above the diagonal, meaning

that on average |〈DI〉| > |ε|. This observation can be

seen as a signature of inhomogeneities (discontinuities)

that are not well captured by the method using the exact

law. These inhomogeneities lead mainly to a non-local

contribution visible at large σ (see Figures 3 and 5).

5. DISCUSSION & CONCLUSION

In this paper, we have used two different methods

(or exact laws) to measure the rate of turbulent energy

transfer at MHD scales. The first is the PP98 exact

law applicable to homogeneous turbulence, and the sec-

ond is the local inertial dissipation DσI . Both laws have

a similar form with the same combination of structure

functions, but in the latter case the homogeneity as-

sumption is not necessary for its derivation. Therefore,

DσI can be considered as more general than the PP98 law

since it is a local (exact) law allowing us to measure the

energy transfer rate at each point of the turbulent flow

even when discontinuities are present. Note that the

weak formulation of the PP98 law provides a theoretical
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Figure 6. Inertial dissipation as a function of the mean
rate of energy transfer measured via the PP98 law. The
colour scales correspond to the solar wind velocity (left) and
to the magnetic field fluctuations (right). The triangle and
square markers respectively refer to the slow and fast winds
(THEMIS-B) in the upper panels, and to PSP1 and PSP5
in the lower panels. The dashed (diagonal) lines correspond
to |〈DI〉| = |ε| and black markers are the intervals studied in
Figure 3.

justification of the observational work of Sorriso-Valvo

et al. (2018, 2019a,b).

Theoretically, several scaling behaviors are expected

for DσI depending to the type of signals. For pure tur-

bulent fluctuations for which the PP98 applies well, a
flat signal is expected for DσI and reported in our study.

In the presence of discontinuities, a scaling in σ−1 is ex-

pected and indeed well observed over the whole available

range of scales. However, no signature of a dissipation

range in σ2 is detected. These properties can be ex-

plained by the fact that the present study is limited to

MHD scales. Therefore, a natural extension of this work

would be to study sub-MHD scales using data that have

the required high time resolution, such as those of the

MMS mission, to see if a σ2 dissipation can be detected.

Unlike the viscous dissipation discussed in Section 2, in

collisionless plasma the dissipation involves a complex

physics at kinetic scales and a variation different from

σ2 (but still with a positive slope) is likely. The method

based on inertial dissipation can offer an original diag-

nosis to characterize this dissipation.

Inertial dissipation has many advantages over the ex-

act law but its implementation on real data calls for

some caution. This is because the dissipation formula is

derived in the theoretical limit σ → 0, which is unattain-

able in real data. The smallest scale that can be used in

spacecraft (or simulations) data is set by the available

time (or grid) resolution. To what extent the inertial

dissipation estimated at this smallest accessible scale is

representative of dissipation at the actual smallest scale

of the system remains thus subject to caution.

The other limitation of the present study is that it is

based on the MHD model. However, this limitation can

(partly) be overcome by using the incompressible Hall-

MHD model already derived by Galtier (2018), which

would allow to probe finer scales and to possibly high-

light a correlation between the inertial dissipation with

temperature, or to estimate the importance of the Hall

effect in the energy cascade. A further potential im-

provement is to account for density fluctuations and see

how they would impact the inertial dissipation estimates

in the solar wind. Such a model remains yet to be de-

rived. However, even with such general models, there

will always be a limitation imposed by the temporal

resolution of the data that will prevent the strict ap-

plication of σ → 0.

A final caveat that should be kept in mind when es-

timating both the inertial dissipation and the cascade

rate from the exact law, which is inherent to the use of

single spacecraft data, is the validity of the Taylor hy-

pothesis and, even when it is valid, how its use would

impact the measured quantities. In the case of the iner-

tial dissipation, the use of the Taylor hypothesis implies

that DI only depends on one dimensional space variable.

One can assume isotropy (as done in exact law studies)

but this assumption is poorly verified in the solar wind.

Several heating mechanisms exist in the solar wind

(see Figure 7) and their predominance seems to depend

on the heliospheric radial distance as shown by the pro-

ton temperature measurements (with a slow decrease of

the temperature up to 20 AU, then an increase beyond

20 AU (Matthaeus et al. 1999; Elliott et al. 2019)). It

is well known that around 1 AU turbulent fluctuations

are dominant, but closer to the Sun both discontinuities

and strong turbulent fluctuations are important as now

evidenced in PSP observations, while beyond 2 AU we

observe large-scale inhomogeneous structures such as in-

terplanetary shocks, with relatively weak turbulent fluc-

tuations. Beyond 20 AU, the dominant heating mecha-

nism is mainly pickup ions (Zank et al. 2018; Pine et al.

2020b). Faced with such a variety of processes, it is in-

teresting to have a tool that allows us to quantify the

turbulent energy cascade rate at fluid scales, regardless
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of the dominant heating mechanism at work. The in-

ertial dissipation seems to be a good candidate for this

purpose.

Sun

TF and
discontinuities

TF Shocks Interstellar PUIs

0.2 AU 2 AU 20 AU

Figure 7. Schematically, the heliospheric turbulence can be
separated into four regions where the mean rate of energy
transfer has different origins. TF and PUIs stand for tur-
bulent fluctuations and pickup ions, respectively. Note that
this classification is made in terms of variations in the basic
fields that enter the MHD equations. Therefore, this view is
more rooted in the physics of turbulence than in the sources
of turbulence of the solar wind.
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APPENDIX

A. COMPARISON OF ALGORITHMS FOR COMPUTATION OF INERTIAL DISSIPATION

To compute equation (10), different possibilities are available. The first one, and the one chosen for this work, is to

apply the gradient on the test function ϕσ. The latter being known analytically, its implementation does not introduce

any numerical error and respect the hypothesis of non-regularity of the fields at the origin of the derivation of DI. A

second possibility is to perform an integration by part so that the gradient acts on the structure function Y . The

form obtained is almost identical to the PP98 law before integration assuming isotropy but, on the one hand, this is

in contradiction with the assumption of non-regularity of the fields and, on the other hand, it introduces numerical

errors when computing its gradient.

100 101 102

< [s]

100

102

jhD<
I ij = jhD<

IbPij
j"1Dj = jhD<

IbPij

Figure 8. Evolution of |〈Dσ
I 〉| / |〈Dσ

IbP〉| and |ε1D| / |〈Dσ
IbP〉| as a function of σ. For a consistent comparison, the time lag τ

involved in the computation of ε1D takes the same values as σ.

To verify in practice the difference between these two computations, we compared the estimation of the inertial

dissipation with and without integration by parts (hereafter named DI and DIbP respectively) as well as PP98 without

the isotropy assumption, named ε1D. In Figure 8 we show the comparison between these three methods for the interval

studied in subsection 4.2. The effect of the integration by parts is only slightly felt at small scale because the black

curve is equal to 1 for all the values of σ except for the minimal one and, the grey curve confirms that when σ → σmin,

we find the equality 〈DIbP〉 = ε1D predicted theoretically.
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B. RADIAL EVOLUTION OF THE MAGNETIC FIELD

To verify that the lack of correlation underlined in the description of Figure 6 is not a curiosity, it is interesting to

look at the evolution of the magnetic field as PSP approaches the Sun. Figure 9 shows that as the radial distance

decreases, the average magnetic field strength B0 increases and the ratio BRMS/B0 decreases. This is thus consistent

with the results of Section 4.
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Figure 9. Radial evolution of PSP1 and PSP5 during the first (top) and fifth (bottom) approaches. The color shows the
relative intensity of the average value of the magnetic field (left), and its normalized fluctuations (right).
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